Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(38): 20936-20942, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37703050

RESUMO

The exploration of non-noble metal catalysts for alkane dehydrogenation and their catalytic mechanisms is the priority in catalysis research. Here, we report a high-density coordinatively unsaturated Zn cation (Zncus) catalyst for the direct dehydrogenation (DDH) of ethylbenzene (EB) to styrene (ST). The catalyst demonstrated good catalytic performance (∼40% initial EB conversion rate and >98% ST selectivity) and excellent regeneration ability in the reaction, which is attributed to the high-density (HD) distribution and high-stability structure of Zncus active sites on the surface of zinc silicate (HD-Zncus@ZS). Density functional theory (DFT) calculations further illustrated the reaction pathway and intermediates, supporting that the Zncus sites can efficiently activate the C-H bond of ethyl on ethylbenzene. Developing the high-density Zncus catalyst and exploring the catalytic mechanism laid a good foundation for designing practical non-noble metal catalysts.

2.
ChemSusChem ; 16(20): e202300750, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37419862

RESUMO

The selective transformation of lignin to value-added biochemicals (e. g., phenolic acids) in high yields is incredibly challenging due to its structural complexity and many possible reaction pathways. Phenolic acids (PA) are key building blocks for various aromatic polymers, but the isolation of PAs from lignin is below 5 wt.% and requires harsh reaction conditions. Herein, we demonstrate an effective route to selectively convert lignin extracted from sweet sorghum and poplar into isolated PA in a high yield (up to 20 wt.% of lignin) using a low-cost graphene oxide-urea hydrogen peroxide (GO-UHP) catalyst under mild conditions (<120 °C). The lignin conversion yield is up to 95 %, and the remaining low molecular weight organic oils are ready for aviation fuel production to complete lignin utilization. Mechanistic studies demonstrate that pre-acetylation allows the selective depolymerization of lignin to aromatic aldehydes with a decent yield by GO through the Cα activation of ß-O-4 cleavage. A urea-hydrogen peroxide (UHP) oxidative process is followed to transform aldehydes in the depolymerized product to PAs by avoiding the undesired Dakin side reaction due to the electron-withdrawing effect of the acetyl group. This study opens a new way to selectively cleave lignin side chains to isolated biochemicals under mild conditions.


Assuntos
Hidroxibenzoatos , Lignina , Lignina/química , Polimerização , Catálise , Aldeídos
3.
Nat Commun ; 14(1): 2588, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147403

RESUMO

Single-site pincer-ligated iridium complexes exhibit the ability for C-H activation in homogeneous catalysis. However, instability and difficulty in catalyst recycling are inherent disadvantages of the homogeneous catalyst, limiting its development. Here, we report an atomically dispersed Ir catalyst as the bridge between homogeneous and heterogeneous catalysis, which displays an outstanding catalytic performance for n-butane dehydrogenation, with a remarkable n-butane reaction rate (8.8 mol·gIr-1·h-1) and high butene selectivity (95.6%) at low temperature (450 °C). Significantly, we correlate the BDH activity with the Ir species from nanoscale to sub-nanoscale, to reveal the nature of structure-dependence of catalyst. Moreover, we compare Ir single atoms with Pt single atoms and Pd single atoms for in-depth understanding the nature of metal-dependence at the atomic level. From experimental and theoretical calculations results, the isolated Ir site is suitable for both reactant adsorption/activation and product desorption. Its remarkable dehydrogenation capacity and moderate adsorption behavior are the key to the outstanding catalytic activity and selectivity.

5.
Molecules ; 29(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38202731

RESUMO

MXene, a two-dimensional (2D) nanomaterial with diverse applications, has gained significant attention due to its 2D lamellar structure, abundance of surface groups, and conductivity. Despite various established synthesis methods since its discovery in 2011, MXenes produced through different approaches exhibit variations in structural and physicochemical characteristics, impacting their suitability for environmental application. This study delves into the effect of synthesis conditions on MXene properties and its adsorption capabilities for four commonly prescribed antibiotics. We utilized material characterization techniques to differentiate MXenes synthesized using three prevalent etchants: hydrofluoric acid (HF), mixed acids (HCl/HF), and fluoride salts (LiF/HCl). Our investigation of adsorption performance included isotherm and kinetic analysis, complemented by density functional theory calculations. The results of this research pinpointed LiF/HCl as an efficient etchant, yielding MXene with favorable morphology and surface chemistry. Electrostatic interactions and hydrogen bonding between MXene surface terminations and ionizable moieties of the antibiotic molecules emerge as pivotal factors in adsorption. Specifically, a higher presence of oxygen terminations increases the binding affinities. These findings provide valuable guidance for etchant selection in environmental applications and underscore the potential to tailor MXenes through synthesis conditions to design membranes capable of selectively removing antibiotics and other targeted substances.


Assuntos
Antibacterianos , Ácido Fluorídrico , Nitritos , Elementos de Transição , Adsorção , Cinética , Condutividade Elétrica
6.
Nat Commun ; 13(1): 6798, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357421

RESUMO

Hydrogen is increasingly being discussed as clean energy for the goal of net-zero carbon emissions, applied in the proton-exchange-membrane fuel cells (PEMFC). The preferential oxidation of CO (PROX) in hydrogen is a promising solution for hydrogen purification to avoid catalysts from being poisoned by the trace amount of CO in hydrogen-rich fuel gas. Here, we report the fabrication of a novel bimetallic Pt-Fe catalyst with ultralow metal loading, in which fully-exposed Pt clusters bonded with neighbor atomically dispersed Fe atoms on the defective graphene surface. The fully-exposed PtFe cluster catalyst could achieve complete elimination of CO through PROX reaction and almost 100% CO selectivity, while maintaining good stability for a long period. It has the mass-specific activity of 6.19 (molCO)*(gPt)-1*h-1 at room temperature, which surpasses those reported in literatures. The exhaustive experimental results and theoretical calculations reveal that the construction of fully-exposed bimetallic Pt-Fe cluster catalysts with maximized atomic efficiency and abundant interfacial sites could facilitate oxygen activation on unsaturated Fe species and CO adsorption on electron-rich Pt clusters to hence the probability of CO oxidation, leading to excellent reactivity in practical applications.

7.
Nat Commun ; 13(1): 5800, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192383

RESUMO

In heterogeneous catalysis, the interface between active metal and support plays a key role in catalyzing various reactions. Specially, the synergistic effect between active metals and oxygen vacancies on support can greatly promote catalytic efficiency. However, the construction of high-density metal-vacancy synergistic sites on catalyst surface is very challenging. In this work, isolated Pt atoms are first deposited onto a very thin-layer of MoO3 surface stabilized on γ-Mo2N. Subsequently, the Pt-MoOx/γ-Mo2N catalyst, containing abundant Pt cluster-oxygen vacancy (Ptn-Ov) sites, is in situ constructed. This catalyst exhibits an unmatched activity and excellent stability in the reverse water-gas shift (RWGS) reaction at low temperature (300 °C). Systematic in situ characterizations illustrate that the MoO3 structure on the γ-Mo2N surface can be easily reduced into MoOx (2 < x < 3), followed by the creation of sufficient oxygen vacancies. The Pt atoms are bonded with oxygen atoms of MoOx, and stable Pt clusters are formed. These high-density Ptn-Ov active sites greatly promote the catalytic activity. This strategy of constructing metal-vacancy synergistic sites provides valuable insights for developing efficient supported catalysts.

8.
J Am Chem Soc ; 144(40): 18485-18493, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36161870

RESUMO

The atomically dispersed metal catalyst or single-atom catalyst (SAC) with the utmost metal utilization efficiency shows excellent selectivity toward ethylene compared to the metal nanoparticles catalyst in the acetylene semi-hydrogenation reaction. However, these catalysts normally work at relatively high temperatures. Achieving low-temperature reactivity while preserving high selectivity remains a challenge. To improve the intrinsic reactivity of SACs, rationally tailoring the coordination environments of the first metal atom by coordinating it with a second neighboring metal atom affords an opportunity. Here, we report the fabrication of a dual-atom catalyst (DAC) that features a bonded Pd1-Cu1 atomic pair anchoring on nanodiamond graphene (ND@G). Compared to the single-atom Pd or Cu catalyst, it exhibits increased reactivity at a lower temperature, with 100% acetylene conversion and 92% ethylene selectivity at 110 °C. This work provides a strategy for designing DACs for low-temperature hydrogenation by manipulating the coordination environment of catalytic sites at the atomic level.

9.
Nat Commun ; 13(1): 4809, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974104

RESUMO

The continuous increase in manufacturing coupled with the difficulty of recycling of plastic products has generated huge amounts of waste plastics. Most of the existing chemical recycling and upcycling methods suffer from harsh conditions and poor product selectivity. Here we demonstrate a photocatalytic method to oxidize polystyrene to aromatic oxygenates under visible light irradiation using heterogeneous graphitic carbon nitride catalysts. Benzoic acid, acetophenone, and benzaldehyde are the dominant products in the liquid phase when the conversion of polystyrene reaches >90% at 150 °C. For the transformation of 0.5 g polystyrene plastic waste, 0.36 g of the aromatic oxygenates is obtained. The reaction mechanism is also investigated with various characterization methods and procedes via polystyrene activation to form hydroxyl and carbonyl groups over its backbone via C-H bond oxidation which is followed by oxidative bond breakage via C-C activation and further oxidation processes to aromatic oxygenates.

10.
Nat Commun ; 13(1): 4379, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902595

RESUMO

The coupling of acetonitrile into succinonitrile, an important terminal dinitrile for value-added nylon production, via a dehydrogenative route is highly attractive, as it combines the valuable chemical synthesis with the production of green hydrogen energy. Here, we demonstrate that it is possible to achieve a highly selective light driven dehydrogenative coupling of acetonitrile molecules to synthesize succinonitrile using anatase TiO2 based photocatalysts in aqueous medium under mild conditions. Under optimized conditions, the formation rate of succinonitrile reaches 6.55 mmol/(gcat*h), with over 97.5% selectivity to target product. Mechanism studies reveal that water acts as cocatalyst in the reaction. The excited hole of anatase semiconductor oxidizes water forming hydroxyl radical, which subsequently assists the cleavage of sp3 C-H bond of acetonitrile to generate ·CH2CN radical for further C-C coupling. The synergy between TiO2 and Pt cocatalyst is important to enhance the succinonitrile selectivity and prevent undesirable over-oxidation and hydrolysis. This work offers an alternative route to prepare succinonitrile based on renewable energy under mild conditions and avoid the use of toxic reagents and stoichiometric oxidative radical initiators.

11.
Small ; 18(33): e2203283, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35871548

RESUMO

Exploring antibacterial nanomaterials with excellent catalytic antibacterial properties has always been a hot research topic. However, the construction of nanomaterials with robust antibacterial activity at the atomic level remains a great challenge. Here a fully-exposed Pd cluster atomically-dispersed on nanodiamond-graphene (Pdn /ND@G) with excellent catalytic antibacterial properties is reported. The fully-exposed Pd cluster nanozyme provides atomically-dispersed Pd cluster sites that facilitate the activation of oxygen. Notably, the oxidase-like catalytic performance of the fully-exposed Pd cluster nanozyme is much higher than that of Pd single-atom oxidase mimic, Pd nanoparticles oxidase mimic and even the previously reported palladium-based oxidase mimics. Under the density functional theory (DFT) calculations, the Pd cluster sites can efficiently catalyze the decomposition of oxygen to generate reactive oxygen species, resulting in strong antibacterial properties. This research provides a valuable insight to the design of novel oxidase mimic and antibacterial nanomaterial.


Assuntos
Antibacterianos , Nanoestruturas , Antibacterianos/farmacologia , Catálise , Oxirredutases , Oxigênio
12.
Angew Chem Int Ed Engl ; 61(26): e202202654, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35394704

RESUMO

Herein we report an efficient and recyclable catalytic system for tandem CO2 capture and N-formylation to value-added chemicals. CO2 is apt to be captured by morpholine solution, while a highly efficient heterogeneous catalyst, isolated iridium atoms supported over nanadiamond/graphene, is discovered to be highly reactive for the formylation of morpholine, leading to the formation of N-formylmorpholine with excellent productivity (with a turnover number of 5 120 000 in a single batch reaction) and selectivity (>99 %). In addition, the CO2 captured by morpholine under atmospheric conditions can be converted to N-formylmorpholine with decent conversion (51 %), which realizes the integration of CO2 capture and conversion to value-added chemicals.

13.
Adv Mater ; 34(20): e2110455, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35305275

RESUMO

Selective hydrogenation of alkynes to alkenes plays a crucial role in the synthesis of fine chemicals. However, how to achieve high selectivity and effective separation of the catalyst and substrate while obtaining high activity is the key for this reaction. In this work, a Pd single-atom catalyst is anchored to the shell of magnetic core-shell particles that consist of a Ni-nanoparticles core and a graphene sheets shell (Ni@G) for semi-hydrogenation of phenylacetylene, delivering 93% selectivity to styrene at full conversion with a robust turnover frequency of 7074 h-1 under mild reaction conditions (303 K, 2 bar H2 ). Moreover, the catalyst can be recovered promptly from the liquid phase due to its magnetic separability, which makes it present good stability for enduring five cycles. Experimental and theoretical investigations reveal that H2 and substrates are activated by atomically dispersed Pd atoms and Ni@G hybrid support, respectively. The hydrogenation reaction occurs on the surface of Ni@G via hydrogen spillover from the metal to the support. Such a strategy opens an avenue for designing highly active, selective, and magnetically recyclable catalysts for selective hydrogenation in liquid reaction systems.

14.
Angew Chem Int Ed Engl ; 61(18): e202201540, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35199428

RESUMO

Direct conversion of methane into value-added chemicals, such as methanol under mild conditions, is a promising route for industrial applications. In this work, atomically dispersed Rh on TiO2 suspended in an aqueous solution was used for the oxidation of methane to methanol. Promoted by copper cations (as co-catalyst) in solution, the catalysts exhibited high activity and selectivity for the production of methanol using molecular oxygen with the presence of carbon monoxide at 150 °C with a reaction pressure of 31 bar. Millimole level yields of methanol were reached with the selectivity higher than 99 % using the Rh/TiO2 catalysts with the promotion of the copper cation. CO was the reductive agent to generate H2 from H2 O, which led to the formation of H2 O2 through the reaction of H2 and O2 . Atomically dispersed Rh activated the C-H bond in CH4 and catalyzed the oxidation using H2 O2 . Copper cations maintained the low-valence state of Rh. Moreover, copper acted as a scavenger for suppressing the overoxidation, thus leading to the high selectivity of methanol.

15.
Angew Chem Int Ed Engl ; 61(10): e202117205, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34989076

RESUMO

Polyethylene terephthalate (PET) and CO2 , two chemical wastes that urgently need to be transformed in the environment, are converted simultaneously in a one-pot catalytic process through the synergistic coupling of three reactions: CO2 hydrogenation, PET methanolysis and dimethyl terephthalate (DMT) hydrogenation. More interestingly, the chemical equilibria of both reactions were shifted forward due to a revealed dual-promotion effect, leading to significantly enhanced PET depolymerization. The overall methanol yield from CO2 hydrogenation exceeded the original thermodynamic equilibrium limit since the methanol was in situ consumed in the PET methanolysis. The degradation of PET by a stoichiometric ratio of methanol was significantly enhanced because the primary product, DMT was hydrogenated to dimethyl cyclohexanedicarboxylate (DMCD) or p-xylene (PX). This synergistic catalytic process provides an effective way to simultaneously recycle two wastes, polyesters and CO2 , for producing high-value chemicals.

16.
Innovation (Camb) ; 3(1): 100189, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34984408

RESUMO

Selective hydrodeoxygenation of biomass-derived aromatic alcohols to value-added chemical or fuel is of great importance for sustainable biomass upgrading, and hydrodeoxygenation of 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) is one of the most attractive reactions. Achieving the conversion of HMF to DMF using H2 at ambient temperature is challenging. In this work, we used PdCu nanoalloys to catalyze the selective hydrodeoxygenation reaction of HMF to DMF using H2 as the reducing agent. The reaction path and the product selectivity are governed by the crystallographic phase of the PdCu nanoalloys. It was discovered that body-centered cubic (BCC) PdCu nanoalloys supported on activated carbon (AC) exhibited outstanding performance with 93.6% yield of DMF at room temperature (PdCu/AC-BCC). A combination of experimental and density functional theory (DFT) studies showed that the tilted adsorption modes of furanic intermediates on PdCu-BCC nanoalloy surfaces accounted for the high selectivity of DMF; however, furan ring was activated on PdCu face-centered cubic (FCC) nanoalloy surfaces. Furthermore, PdCu/AC-BCC could also catalyze the hydrodeoxygenation of other aromatic alcohols at room temperature while maintaining the aromatic structures. This work opens the way for selective hydrodeoxygenation of the aromatic alcohols at room temperature with the aromatic ring intact.

17.
JACS Au ; 1(11): 1834-1848, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34841403

RESUMO

Heterogeneous catalytic processes produce the majority of the fuels and chemicals in the chemical industry and have kept improving the welfare of human beings for centuries. Although most of the heterogeneous catalytic reactions occur at the gas-solid interface, numerous cases have demonstrated that the condensed water near the active site and/or the aqueous phase merging the catalysts play positive roles in enhancing the performance of heterogeneous catalysts and creating novel catalytic conversion routes. We enumerate the traditional heterogeneous catalytic reactions that enable significant rate/selectivity promotion in the aqueous phase or adsorbed micro water environment and discuss the role of water in specific systems. Some of the novel heterogeneous reactions achieved with only the assistance of the aqueous phase have been summarized. The development of reactions with the participation of the aqueous phase/water and the investigation of the role of water in the heterogeneous catalytic reactions will open new horizons for catalysts with better activity, improved selectivity, and novel processes.

18.
Nat Commun ; 12(1): 6194, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702832

RESUMO

The product selectivity in catalytic hydrogenation of nitriles is strongly correlated with the structure of the catalyst. In this work, two types of atomically dispersed Pd species stabilized on the defect-rich nanodiamond-graphene (ND@G) hybrid support: single Pd atoms (Pd1/ND@G) and fully exposed Pd clusters with average three Pd atoms (Pdn/ND@G), were fabricated. The two catalysts show distinct difference in the catalytic transfer hydrogenation of nitriles. The Pd1/ND@G catalyst preferentially generates secondary amines (Turnover frequency (TOF@333 K 709 h-1, selectivity >98%), while the Pdn/ND@G catalyst exhibits high selectivity towards primary amines (TOF@313 K 543 h-1, selectivity >98%) under mild reaction conditions. Detailed characterizations and density functional theory (DFT) calculations show that the structure of atomically dispersed Pd catalysts governs the dissociative adsorption pattern of H2 and also the hydrogenation pathway of the benzylideneimine (BI) intermediate, resulting in different product selectivity over Pd1/ND@G and Pdn/ND@G, respectively. The structure-performance relationship established over atomically dispersed Pd catalysts provides valuable insights for designing catalysts with tunable selectivity.

20.
Nat Commun ; 12(1): 2664, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976155

RESUMO

Metal nanoparticle (NP), cluster and isolated metal atom (or single atom, SA) exhibit different catalytic performance in heterogeneous catalysis originating from their distinct nanostructures. To maximize atom efficiency and boost activity for catalysis, the construction of structure-performance relationship provides an effective way at the atomic level. Here, we successfully fabricate fully exposed Pt3 clusters on the defective nanodiamond@graphene (ND@G) by the assistance of atomically dispersed Sn promoters, and correlated the n-butane direct dehydrogenation (DDH) activity with the average coordination number (CN) of Pt-Pt bond in Pt NP, Pt3 cluster and Pt SA for fundamentally understanding structure (especially the sub-nano structure) effects on n-butane DDH reaction at the atomic level. The as-prepared fully exposed Pt3 cluster catalyst shows higher conversion (35.4%) and remarkable alkene selectivity (99.0%) for n-butane direct DDH reaction at 450 °C, compared to typical Pt NP and Pt SA catalysts supported on ND@G. Density functional theory calculation (DFT) reveal that the fully exposed Pt3 clusters possess favorable dehydrogenation activation barrier of n-butane and reasonable desorption barrier of butene in the DDH reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...